lll. Appendices
B. Hazard/RPF
1. Technical Aspects of Dose-Response Analysis
Background

EPA released a Preliminary Dose-Response Assessment for OPs on July 31, 2001
(USEPA 2001b) followed by a revised dose-response assessment on December 3,
2001. Both of these analyzes were reviewed by the FIFRA SAP in September 2001
and February 2002, respectively (FIFRA SAP 2001b, 2002). The current approach was
supported by the SAP (FIFRA 2002). At the February 5-8, 2002 meeting of the SAP,
EPA discussed some programming errors found after the December 3, 2001 release of
the Preliminary Cumulative Risk Assessment. These errors have been corrected; the
contents of Il1.B.4 (R programming code) reflect the corrections.

Dose-Response Modeling

The goal of the statistical methods was to estimate the dose that would be expected
to result in a 10% reduction in brain AChE activity, the BMD,,. The data for this study
were in the form of dose-response studies which measured the effect of different dose
rates of OP pesticides on cholinesterase activities in brain, red blood cells, and plasma.
The mean and standard deviation of cholinesterase activity, and number of animals
examined were available for several dosages in each data set. Females and males
were analyzed separately in each study. For each chemical there were several groups
of studies labeled by separate MRIDs. Within each major study, one or more studies
were conducted, each with measurements taken for several durations of exposure.

It is useful to describe the approach to modeling the dose-response data in three
parts:

» the shape of the dose-response curve to be used;
* how multiple data sets were modeled at the same time;
» the statistical methods used to estimate values for the model parameters.

In this analysis, the dose-response function had to accommodate three important
features of the data. First, since the data came from multiple studies, perhaps carried
out in different laboratories and at different times, and even sometimes reporting
cholinesterase activity in different units, activity at a given dosage was expressed as a
fraction of control activity. Second, it was observed that, as dose increased,
cholinesterase activity in quite a few data sets approached a lower non-zero asymptote.
This asymptote varied among chemicals and possibly sexes. Finally, for many of the
chemicals it was apparent that there is a “shoulder” on the dose response curve, such
that the dose-response curve was shallower at lower doses than at higher.
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These features of the dose-response were incorporated in the dose-response model
in two phases. First, a model was developed relating dose to cholinesterase activity
which allowed for a horizontal asympote, and expressed activity at a given dose level as
a fraction of background, or control, activity. In this document, this first model is called
the “basic” model. Next, a submodel relating internal dose to administered dose, was
combined with the first model to make a new model with that could have a shoulder in
the low-dose region. The next subsections discuss these two models in more detail.

Basic Dose-Response Model

The basic model is described by the equation:

@1 PlB;iMR Dose
y= ADP +(1-Py)e B0 B Eqn. 1
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Here, A is the level of chollnesterase activity in the absence of exposure to
organophosphate, Pg is the fraction of cholinesterase activity remaining at a very high
dose of organophosphate, BMR is the level of inhibition at which to estimate the
benchmark dose (in this study, BMR is always 0.10), BMD is the benchmark dose, and
Dose is the dose of organophosphate pesticide, generally in units of mg/kg/day. This
model is essentially the same as was described in FIFRA SAP (2001b, 2002), only
reparametrized so that BMD appears as an explicit parameter, thus simplifying the
calculations. Note that the model is undefined if P, + BMR >1.

Expanded Dose-Response Model

A submodel relating internal dose to administered dose was combined with the basic
model to make the expanded model which allows for a shoulder in the low-dose region.

1. Biologically Inspired Model: Accounting for Potential First-Pass Metabolism

At this time, the appropriate kinetic data needed for the development of a
physiologically based pharmacokinetc model (PBPK model) for all OPs are not
available. EPA has developed a biologically inspired model based on metabolic
pathways for first-pass metabolism which are theorized to influence the shape of the
dose-response curve.

When many chemicals are administered orally, much of the absorbed chemical is
carried to the liver by the portal circulation, where they may be metabolized. In the
presence of saturable metabolism the dose-response curve would be expected to
have a shallower slope at lower doses, and the slope would gradually increase as
metabolism became saturated and more of the active chemical enters the general
circulation. Although a detailed treatment of this process for each chemical is
beyond the scope of this project, this basic idea was used to derive a two-parameter
function of dose that relates administered dose to internal dose. The resulting
function was combined with the basic exponential model giving a model that has a
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low dose shoulder while retaining the dose-response shape of the basic model for
larger doses.

Consider the simple two-compartment pharmacokinetic model illustrated in Figure
1.B.1-1.
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In this simple model, all the ingested chemical is taken directly to the liver, where it is
metabolized. The residual unmetabolized chemical is then distributed to the rest of
the body through the circulation. Intake of chemical is continuous. In this case, two
differential equations and one algebraic equation describe the concentration in the
liver and the rest of the body:

dC
Vthb =0y X(C, =Gy ) —kC,
dC, Dosex BW VG
- = X —_ + —
o (Ca=C) 24 K, +C
C = Oy + OC
¢ O, + O

Here, C, is the concentration in compartment x, where x is a for arterial blood, b for
the body other than liver, and / for liver. The volume of and blood flow to
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compartment x are V, and Q,, where x is either bor /. V,__, and K, describe
saturable metabolism of the chemical in the liver. The constant k, is a first-order
clearance term. Dose is expressed in milligrams per kilogram per day (hence the
constant “24” to convert to hours), and body weight is expressed in kilograms. Thus,
volumes in this parametrization are expressed in liters and concentrations in

milligrams per liter.

At steady state, the derivatives are both O: clearance just balances the dose rate. It
can be shown (by solving the system of equations with derivatives set to zero) that
the concentration in the body (C,) at steady state is:
BW [l 24QlQmeke 24Vmax [l
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Here, the odd constants 0.5 and 4 arise because the solution involves finding the
roots of a quadratic polynomial, and 24 arises because dose rates are usually
expressed in terms of “per day”, while other coefficients in the model are “per hour”.

Equation (2) suggests using the function:

idose = O.5*{(Dose -S-D) +\/(Dose -S =D)* +4 xDose XS} Eqn (3)

to describe the relationship between administered dose (Dose) and a scaled internal
dose, where

S = 24QlQmeke
BW (Qik. + Opk. + 010 ) ,
and
24V hax _ L
D = ——== In this parameterization of the model, V,,, k., and total blood flow (= Q,

+ Q) should be proportional to body weight, so both S and D are independent of
body weight. This is a function of two parameters (S and D), and approaches the
function idose = Dose - D for larger doses; the slope with respect to dose when
Dose is close to 0 is S/(S + D). D quantifies the displacement of the relationship
between Dose and idose from the identity relationship, and S controls the shape of
the relationship at low doses. In the limitas D -~ 0 or S »~, Equation (7) converges
to idose = Dose.

In fact, it is reasonable to use Equation (3) to approximate the relationship
between internal dose and administered dose in the chronic dosing setting, even in
the absence of a detailed pharmacokinetic justification. The general properties of
the equation capture the expected effects of first-pass metabolic clearance of an
active compound: a shallow shoulder of the curve at lower doses, with a slope that
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increases to a limit as the dose increases. As long as S and D are non-negative,
varying these two parameters should result in a good approximation to virtually any
low-dose deviation due to metabolic clearance, at least at the resolution available in
bioassay dose-response data.

2. Equation for the Expanded Model.

The expanded model is just the basic model (Egn. 1), in which Dose is replaced
by an expression relating administered dose to internal dose. Note that, in this use
of the model, the parameter BMD is the internal dose that corresponds to a BMR
level of inhibition. Calculating the benchmark dose that corresponds to that internal
dose requires setting Eqn. 3 equal to BMD, and solving for Dose.

Incorporating Differences among Datasets in the Modeling and Modeling
Variability

The data for each chemical were modeled independently of all other chemicals.
However, the data for any one chemical were to some extent from heterogeneous
studies, grouped hierarchically. At the highest level of the hierarchy, the data could
come from multiple major studies, indicated by different MRID numbers (A MRID no. is
an identification code for a particular study; MRID is used in this discussion to describe
the major studies). At that level, it could be expected that analytic methods could differ
most distinctly, and different major studies might use different units to express
cholinesterase activity. Within a major study were individual dose-response studies,
often the result of multiple intermediate observations in a sub-chronic or chronic study.
Although these were part of the same study, since the data collection was separated by
relatively wide time intervals, there is still a reasonable expectation that details of
method might vary among such data sets. Finally, within each individual dose-response
study were data for both males and females. In order to combine all the data for a given
chemical with a single model, all this variability needed to be incorporated in the model.
This was done with a combination of allowing fixed effects to take different values in
different dose-response data sets and sexes, treating a parameter as if it varied
randomly across data sets, and treating some parameters as fixed for any given
chemical. The following describes how each parameter was treated in the modeling.

» The parameters for the submodel relating administered dose to internal dose (S and
D in Eqn 3) were given a single value for a given chemical, though they could differ
between chemicals.

+ The parameter governing the horizontal asymptote, P, was allowed to differ between
sexes, but otherwise to be the same value for all datasets for a given chemical.

+ The background parameter, A, was estimated as a fixed value for each individual
data set for each sex.

+ The parameter BMD was treated as a random effect. Specifically,

In(BMD) = Ugup + Evrio + Epata set
where U is the log of the geometric mean of the distribution of BMD among data
sets, Eyrp and Ep,., st @re normally distributed random variables with mean 0 and
different standard deviations that reflect variation of In(BMD) among MRIDs and
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among datasets within MRID, respectively. The parameter U, was allowed to vary
between males and females, but for each sex was constant over all data sets for a
chemical. Some chemicals were represented by only one MRID, and some were
represented by MRIDs with only a single data set in them. The above formula was
reduced in the logical way for such chemicals. In particular, when only a single data
set was available for a chemical, all the random effect terms would drop away,
leaving only the log geometric mean for each sex.

* The variation among individual observations from animals of the same sex within a
data set was assumed to be normal, with mean determined by the above model, and
variance proportional to the mean cholinesterase activity level. An earlier version of
this analysis (FIFRA SAP, 2001b) had treated the variance to be proportional to the
square of the mean, and was based on analyzing the relationship between mean
and variance across studies and chemicals. The current model is due to
reexamining the relationship, focusing on the relationship within studies. The
constant of proportionality was allowed to differ among MRIDs for a chemical, to
allow for differences in units.

Estimating Parameters

It proved to be impossible to jointly estimate all the parameters for either the basic or
the expanded model simultaneously. Therefore, parameters in these models were
estimated using a combination of either nime, a method for nonlinear mixed effects
models (when there were multiple MRIDs and/or data sets for a chemical; almost all the
chemicals) or gnls, generalized least squares, and profile likelihood. The functions nime
and gnls are from the package nime for the statistical package R (Ihaka and Gentleman,
1996).

The R package nime estimates parameters for nonlinear mixed effects models using the
approach described in Lindstrom and Bates (1990). Davidian and Giltinan (1995, pp
164 — 174) give a good description of this model, where they refer to it as being based
on “conditional first-order linearization”. This approach involves approximating the
nonlinear function using a Taylor expansion before carrying out maximum likelihood
estimation. The implementation in nime allows the fixed and random effects to be
expressed as linear models of other independent variables. In this analysis, for
example, IBMD was allowed to differ between sexes by modeling IBMD ~ sex - 1, where
sex is a categorical variable in the data set that takes the values “F” or “M”. The term “-
1” indicates that an intercept term should not be fit for this model, so there would be an
estimate of IBMD for each sex.

The function gnls in the R package nime has a similar user interface as does the
function nime, but is appropriate when there are no random effects terms other than the
error variance. Generalized least squares as a method is well described in Chapter 2 of
Davidian and Giltinan (1995).

Parameters for the basic model were estimated first, and served as the basis for
estimating parameters for the expanded model.
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To fit the basic model, the values of P and Pg,, were set to each value on a grid of
appropriate values, and the remaining parameters (background parameter for each
individual data set, mean of In(BMD) for males and females, standard deviations of
In(BMD) among MRIDs and among datasets within MRID, and parameters for the error
variance) were estimated by the method appropriate to the dataset (that is, either gnis
or nlme; see the discussion of these two methods, below). When all the models for that
particular grid of P, values were fit, a new grid was constructed by using the values of
P on either side of the grid point with the largest loglikelihood as the new extremes,
and repeating the process. When no BMD estimate on grid points surrounding the point
with the largest loglikelihood differed from the BMD at the maximum by more than 5%,
the process of iterative refining the grid stopped.

A similar method was used to estimate S and D in the expanded model. First, the
values of Py and Pg,, were fixed to their best estimates for the basic model, and were
not further modified. In the expanded model, the grid being explored and refined was of
values for S and D, but otherwise the process was the same as for the basic model. In
the expanded model, the criterion for convergence was no difference between the
maximum on the grid and neighboring points of greater than 10%.
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